aboutsummaryrefslogtreecommitdiff
path: root/src/analysis.rs
blob: 41a4f306addb9689613164b6e55b12bf685ad0ec (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
use crate::{LabelFormat,LabelU16};

use avl_tree::*;

#[derive(Debug,PartialEq)]
pub struct Data {
    pub label: u16,
    pub area: usize,
    pub perimeter: usize,
    pub neighboring: usize,
    pub non_neighboring: usize,
}

impl Data {
    const fn new(label: u16, area: usize, perimeter: usize, neighboring: usize, non_neighboring: usize) -> Self {
        Self {
            label,
            area,
            perimeter,
            neighboring,
            non_neighboring,
        }
    }
}

fn any(a: &[bool]) -> bool {
    for value in a.iter() {
        if *value {
            return true;
        }
    }
    false
}

impl LabelFormat<u16> {
    pub fn get_tree(&self) -> AVLTree<u16, Data> {
        let mut avt = avl_tree::AVLTree::<u16, Data>::new();
        for y in 0..self.height {
            for x in 0..self.width {
                let index = x + y * self.width;
                let key = self.buffer[index];
                if key.is_zero() {
                    continue;
                }
                let mut new_data = Data::new(
                    key,
                    0,
                    0,
                    0,
                    0);
                match avt.get(key) {
                    Some(data) => {
                        new_data.area = data.area;
                        new_data.perimeter = data.perimeter;
                        new_data.neighboring = data.neighboring;
                        new_data.non_neighboring = data.non_neighboring;
                    },
                    None => {
                    },
                }
                let neighbors: [Option<u16>;4] = [
                    self.get_up(x,y),
                    self.get_right(x,y),
                    self.get_down(x,y),
                    self.get_left(x,y),
                ];
                let perimeter_slice = neighbors.map(|x|
                    match x {
                        Some(y) => (y.is_zero()) || (y != new_data.label),
                        None => false,
                    });
                let add_perimeter = any(&perimeter_slice);
                let neighboring_slice = neighbors.map(|x|
                    match x {
                        Some(y) => (y != new_data.label) && (!y.is_zero()),
                        None => false,
                    });
                let add_neighboring = any(&neighboring_slice);
                let non_neighboring_slice = neighbors.map(|x|
                    match x {
                        Some(y) => y.is_zero(),
                        None => false,
                    });
                let add_non_neighboring = any(&non_neighboring_slice);
                // Always increase area
                new_data.area += 1;
                // Increase perimeter if there is a neighbor that is not the same cell
                if add_perimeter {
                    new_data.perimeter += 1;
                }
                if add_non_neighboring {
                    new_data.non_neighboring += 1;
                }
                if add_neighboring {
                    new_data.neighboring += 1;
                }
                avt.insert(key, new_data);
            }
        }
        avt
    }

    pub fn filter<T: Fn(&Data) -> bool>(&self, filter: T) -> LabelFormat<u16> {
        let mut output = LabelFormat::<u16> {
            buffer: vec![0u16; self.width*self.height],
            width: self.width,
            height: self.height,
        };
        let tree = self.get_tree();
        for y in 0..self.height {
            for x in 0..self.width {
                let index = x + y * self.width;
                let key = self.buffer[index];
                if key.is_zero() {
                    continue;
                }
                if let Some(data) = tree.get(key) {
                    if filter(data) {
                        output.buffer[index] = self.buffer[index];
                    }
                } else {
                    panic!("Tree should contain all non-zero values!");
                }
            }
        }
        output
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn get_areas_test() {
        const DIM: usize = 6;
        let mut test_data = LabelFormat::<u16> {
            buffer: vec![0u16; DIM*DIM],
            width: DIM,
            height: DIM,
        };
        test_data.buffer[2+3*DIM] = 1;
        test_data.buffer[3+3*DIM] = 1;
        test_data.buffer[4+3*DIM] = 2;
        test_data.idilate();

        let expected: [Vec<u16>;1] = [
            [
                0, 0, 0, 0, 0, 0,
                0, 0, 0, 0, 0, 0,
                0, 0, 1, 1, 2, 0,
                0, 1, 1, 1, 2, 2,
                0, 0, 1, 1, 2, 0,
                0, 0, 0, 0, 0, 0,
            ].to_vec(),
        ];

        assert_eq!(test_data.buffer, expected[0]);
        let tree = test_data.get_tree();
        let data = tree.get(0);
        assert_eq!(data, None);
        let data = tree.get(1).expect("Key should exist");
        assert_eq!(*data, Data::new(1, 7, 6, 3, 5));
        let data = tree.get(2).expect("Key should exist");
        assert_eq!(*data, Data::new(2, 4, 4, 3, 3));
        let data = tree.get(3);
        assert_eq!(data, None);
    }

    #[test]
    fn filter_test() {
        const DIM: usize = 6;
        let mut test_data = LabelFormat::<u16> {
            buffer: vec![0u16; DIM*DIM],
            width: DIM,
            height: DIM,
        };
        test_data.buffer[2+3*DIM] = 1;
        test_data.buffer[3+3*DIM] = 1;
        test_data.buffer[4+3*DIM] = 2;
        test_data.idilate();

        let expected: [Vec<u16>;2] = [
            [
                0, 0, 0, 0, 0, 0,
                0, 0, 0, 0, 0, 0,
                0, 0, 1, 1, 2, 0,
                0, 1, 1, 1, 2, 2,
                0, 0, 1, 1, 2, 0,
                0, 0, 0, 0, 0, 0,
            ].to_vec(),
            [
                0, 0, 0, 0, 0, 0,
                0, 0, 0, 0, 0, 0,
                0, 0, 1, 1, 0, 0,
                0, 1, 1, 1, 0, 0,
                0, 0, 1, 1, 0, 0,
                0, 0, 0, 0, 0, 0,
            ].to_vec(),
        ];

        let tree = test_data.get_tree();
        let data = tree.get(0);
        assert_eq!(data, None);
        let data = tree.get(1).expect("Key should exist");
        assert_eq!(*data, Data::new(1, 7, 6, 3, 5));
        let data = tree.get(2).expect("Key should exist");
        assert_eq!(*data, Data::new(2, 4, 4, 3, 3));
        let data = tree.get(3);
        assert_eq!(data, None);

        let filtered_data = test_data.filter(|x| x.area > 5);
        assert_eq!(filtered_data.buffer, expected[1]);
        let tree = filtered_data.get_tree();
        let data = tree.get(0);
        assert_eq!(data, None);
        let data = tree.get(1).expect("Key should exist");
        assert_eq!(*data, Data::new(1, 7, 6, 0, 6));
        let data = tree.get(2);
        assert_eq!(data, None);
    }
}