1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
|
class Decoder:
"""# Decoder Model
Constructs a decoder model with a certain depth of intermediate layers of
fixed size"""
def __init__(self, model_base_directory):
"""# Decoder Model Initialization
- model_base_directory: The base folder directory where the model will
be saved/ loaded"""
self.model_base_directory = model_base_directory
def init(self):
"""# Initialize a new Decoder
Expects a model parameters file to already exist in the initialization
base directory when initializing the model"""
from tensorflow import keras
from tensorflow.keras import layers
self.load_parameters()
assert self.depth >= 0, "Depth must be non-negative"
self.model = keras.models.Sequential()
if self.depth == 0:
self.model.add(
layers.Dense(
self.data_size,
input_shape=(self.latent_size,),
activation=None,
name="decoder_latent_vector",
)
)
else:
self.model.add(
layers.Dense(
self.layer_size,
input_shape=(self.latent_size,),
activation=None,
name="decoder_dense_1",
)
)
if self.use_leaky_relu:
self.model.add(layers.LeakyReLU())
else:
self.model.add(layers.ReLU())
if self.dropout > 0.0:
self.model.add(layers.Dropout(self.dropout))
for _d in range(1, self.depth):
self.model.add(
layers.Dense(
self.layer_size, activation=None, name=f"decoder_dense_{_d+1}"
)
)
if self.use_leaky_relu:
self.model.add(layers.LeakyReLU())
else:
self.model.add(layers.ReLU())
if self.dropout > 0.0:
self.model.add(layers.Dropout(self.dropout))
self.model.add(
layers.Dense(
self.data_size, activation=None, name="decoder_output_vector"
)
)
self.model._name = "Decoder"
return self
def load(self):
"""# Load an existing Decoder"""
from os import listdir
if "decoder.keras" not in listdir(f"{self.model_base_directory}/portable/"):
return None
import tensorflow as tf
self.model = tf.keras.models.load_model(
f"{self.model_base_directory}/portable/decoder.keras", compile=False
)
self.model._name = "Decoder"
return self
def save(self, overwrite=False):
"""# Save the current Decoder
- Overwrite: overwrite any existing decoder that has been saved"""
from os import listdir
if overwrite:
self.model.save(f"{self.model_base_directory}/portable/decoder.keras")
return True
if "decoder.keras" in listdir(f"{self.model_base_directory}/portable/"):
return False
self.model.save(f"{self.model_base_directory}/portable/decoder.keras")
return True
def load_parameters(self):
"""# Load Decoder Model Parameters from File
The file needs to have the following parameters defined:
- data_size: int
- autoencoder_layer_size: int
- latent_size: int
- autoencoder_depth: int
- dropout: float (set to 0. if you don't want a dropout layer)
- use_leaky_relu: boolean"""
from pickle import load
with open(
f"{self.model_base_directory}/portable/model_parameters.pkl", "rb"
) as phandle:
parameters = load(phandle)
self.data_size = parameters["data_size"]
self.layer_size = parameters["autoencoder_layer_size"]
self.latent_size = parameters["latent_size"]
self.depth = parameters["autoencoder_depth"]
self.dropout = parameters["dropout"]
self.use_leaky_relu = parameters["use_leaky_relu"]
def summary(self):
"""# Returns the summary of the Decoder model"""
return self.model.summary()
def __call__(self, *args, **kwargs):
"""# Callable
When calling the decoder class, return the model's output"""
return self.model(*args, **kwargs)
|