1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
|
from matplotlib import pyplot as plt
def blank_plot(_plt=None, _xticks=False, _yticks=False):
"""# Remove Plot Labels"""
if _plt is None:
_plt = plt
_plt.xlabel("")
_plt.ylabel("")
_plt.title("")
tick_params = {
"which": "both",
"bottom": _xticks,
"left": _yticks,
"right": False,
"labelleft": False,
"labelbottom": False,
}
_plt.tick_params(**tick_params)
for child in plt.gcf().get_children():
if child._label == "<colorbar>":
child.set_yticks([])
axs = _plt.gcf().get_axes()
try:
axs = axs.flatten()
except:
...
for ax in axs:
ax.set_xlabel("")
ax.set_ylabel("")
ax.set_title("")
ax.tick_params(**tick_params)
def save_plot(name, _plt=None, _xticks=False, _yticks=False, tighten=True):
"""# Save Plot in Multiple Formats"""
assert type(name) == str, "Name must be string"
from os.path import dirname
from os import makedirs
makedirs(dirname(name), exist_ok=True)
if _plt is None:
from matplotlib import pyplot as plt
_plt = plt
_plt.savefig(name + ".png", dpi=1000)
blank_plot(_plt, _xticks=_xticks, _yticks=_yticks)
if tighten:
from matplotlib import pyplot as plt
plt.tight_layout()
_plt.savefig(name + ".pdf")
_plt.savefig(name + ".svg")
def scatter_2d(data_2d, labels=None, _plt=None, **matplotlib_kwargs):
"""# Scatter 2d Data
- data_2d: 2d-dataset to plot
- labels: labels for each case
- _plt: Optional specific plot to transform"""
from .colors import Pcolor
if _plt is None:
_plt = plt
def _filter(data, labels=None, _filter_on=None):
if labels is None:
return data, False
else:
return data[labels == _filter_on], True
for _class in [2, 3, 1, 0]:
local_data, has_color = _filter(data_2d, labels, _class)
if has_color:
_plt.scatter(
local_data[:, 0],
local_data[:, 1],
color=Pcolor[_class],
**matplotlib_kwargs
)
else:
_plt.scatter(local_data[:, 0], local_data[:, 1], **matplotlib_kwargs)
break
return _plt
def plot_contour(two_d_mask, color="black", color_map=None, raise_error=False):
"""# Plot Contour of Mask"""
from matplotlib.pyplot import contour
from numpy import mgrid
z = two_d_mask
x, y = mgrid[: z.shape[1], : z.shape[0]]
if color_map is not None:
try:
color = color_map(color)
except Exception as e:
if raise_error:
raise e
try:
contour(x, y, z.T, colors=color, linewidth=0.5)
except Exception as e:
if raise_error:
raise e
def gaussian_smooth_plot(
xy,
sigma=0.1,
extent=[-1, 1, -1, 1],
grid_n=100,
grid=None,
do_normalize=True,
):
"""# Plot Data with Gaussian Smoothening around point"""
from numpy import array, ndarray, linspace, meshgrid, zeros_like
from numpy import pi, sqrt, exp
from numpy.linalg import norm
if not type(xy) == ndarray:
xy = array(xy)
if grid is not None:
XY = grid
else:
X = linspace(extent[0], extent[1], grid_n)
Y = linspace(extent[2], extent[3], grid_n)
XY = array(meshgrid(X, Y)).T
smoothed = zeros_like(XY[:, :, 0])
factor = 1
if do_normalize:
factor = (sqrt(2 * pi) * sigma) ** 2.
if len(xy.shape) == 1:
smoothed = exp(-((norm(xy - XY, axis=-1) / (sqrt(2) * sigma)) ** 2.0)) / factor
else:
try:
from tqdm.notebook import tqdm
except Exception:
def tqdm(x):
return x
for i in tqdm(range(xy.shape[0])):
if xy.shape[-1] == 2:
smoothed += (
exp(-((norm((xy[i, :] - XY), axis=-1) / (sqrt(2) * sigma)) ** 2.0))
/ factor
)
elif xy.shape[-1] == 3:
smoothed += (
exp(-((norm((xy[i, :2] - XY), axis=-1) / (sqrt(2) * sigma)) ** 2.0))
/ factor
* xy[i, 2]
)
return smoothed, XY
def plot_grid_data(xy_grid, data_grid, cbar=False, _plt=None, _cmap="RdBu", grid_min=1):
"""# Plot Gridded Data"""
from numpy import nanmin, nanmax
from matplotlib.colors import TwoSlopeNorm
if _plt is None:
_plt = plt
norm = TwoSlopeNorm(
vmin=nanmin([-grid_min, nanmin(data_grid)]),
vcenter=0,
vmax=nanmax([grid_min, nanmax(data_grid)]),
)
_plt.pcolor(xy_grid[:, :, 0], xy_grid[:, :, 1], data_grid, cmap="RdBu", norm=norm)
if cbar:
_plt.colorbar()
def plot_winding(xy_grid, winding_grid, cbar=False, _plt=None):
plot_grid_data(xy_grid, winding_grid, cbar=cbar, _plt=_plt, grid_min=1e-5)
def plot_vorticity(xy_grid, vorticity_grid, cbar=False, save=False, _plt=None):
plot_grid_data(xy_grid, vorticity_grid, cbar=cbar, _plt=_plt, grid_min=1e-1)
plt.blank = lambda: blank_plot(plt)
plt.scatter2d = lambda data, labels=None, **matplotlib_kwargs: scatter_2d(
data, labels, plt, **matplotlib_kwargs
)
plt.save = save_plot
def interpolate_points(df, columns=["Latent-0", "Latent-1"], kind="quadratic", N=500):
"""# Interpolate points"""
from scipy.interpolate import interp1d
import numpy as np
points = df[columns].to_numpy()
distance = np.cumsum(np.sqrt(np.sum(np.diff(points, axis=0) ** 2, axis=1)))
distance = np.insert(distance, 0, 0) / distance[-1]
interpolator = interp1d(distance, points, kind=kind, axis=0)
alpha = np.linspace(0, 1, N)
interpolated_points = interpolator(alpha)
return interpolated_points.reshape(-1, 1, 2)
def plot_trajectory(
df,
Fm=24,
FM=96,
interpolate=False,
interpolation_kind="quadratic",
interpolation_N=500,
columns=["Latent-0", "Latent-1"],
frame_column="Frames",
alpha=0.8,
lw=4,
_plt=None,
_z=None,
):
"""# Plot Trajectories
Interpolation possible"""
import numpy as np
from matplotlib.collections import LineCollection
import matplotlib as mpl
if _plt is None:
_plt = plt
if type(_plt) == mpl.axes._axes.Axes:
_ca = _plt
else:
try:
_ca = _plt.gca()
except:
_ca = _plt
X = df[columns[0]]
Y = df[columns[1]]
fm, fM = np.min(df[frame_column]), np.max(df[frame_column])
if interpolate:
if interpolation_kind == "cubic":
if len(df) <= 3:
return
elif interpolation_kind == "quadratic":
if len(df) <= 2:
return
else:
if len(df) <= 1:
return
points = interpolate_points(
df, kind=interpolation_kind, columns=columns, N=interpolation_N
)
else:
points = np.array([X, Y]).T.reshape(-1, 1, 2)
segments = np.concatenate([points[:-1], points[1:]], axis=1)
lc = LineCollection(
segments,
cmap=plt.get_cmap("plasma"),
norm=mpl.colors.Normalize(Fm, FM),
)
if _z is not None:
from mpl_toolkits.mplot3d.art3d import line_collection_2d_to_3d
if interpolate:
_z = _z # TODO: Interpolate
line_collection_2d_to_3d(lc, _z)
lc.set_array(np.linspace(fm, fM, points.shape[0]))
lc.set_linewidth(lw)
lc.set_alpha(alpha)
_ca.add_collection(lc)
_ca.autoscale()
_ca.margins(0.04)
return lc
|