diff options
author | Christian C <cc@localhost> | 2024-11-11 12:29:32 -0800 |
---|---|---|
committer | Christian C <cc@localhost> | 2024-11-11 12:29:32 -0800 |
commit | b85ee9d64a536937912544c7bbd5b98b635b7e8d (patch) | |
tree | cef7bc17d7b29f40fc6b1867d0ce0a742d5583d0 /code/sunlab/common/scaler |
Initial commit
Diffstat (limited to 'code/sunlab/common/scaler')
-rw-r--r-- | code/sunlab/common/scaler/__init__.py | 2 | ||||
-rw-r--r-- | code/sunlab/common/scaler/adversarial_scaler.py | 44 | ||||
-rw-r--r-- | code/sunlab/common/scaler/max_abs_scaler.py | 48 | ||||
-rw-r--r-- | code/sunlab/common/scaler/quantile_scaler.py | 52 |
4 files changed, 146 insertions, 0 deletions
diff --git a/code/sunlab/common/scaler/__init__.py b/code/sunlab/common/scaler/__init__.py new file mode 100644 index 0000000..2a2281a --- /dev/null +++ b/code/sunlab/common/scaler/__init__.py @@ -0,0 +1,2 @@ +from .max_abs_scaler import * +from .quantile_scaler import * diff --git a/code/sunlab/common/scaler/adversarial_scaler.py b/code/sunlab/common/scaler/adversarial_scaler.py new file mode 100644 index 0000000..7f61725 --- /dev/null +++ b/code/sunlab/common/scaler/adversarial_scaler.py @@ -0,0 +1,44 @@ +class AdversarialScaler: + """# Scaler Class to use in Adversarial Autoencoder + + For any scaler to be implemented, make sure to ensure each of the methods + are implemented: + - __init__ (optional) + - init + - load + - save + - __call__""" + + def __init__(self, base_directory): + """# Scaler initialization + + - Initialize the base directory of the model where it will live""" + self.base_directory = base_directory + + def init(self, data): + """# Scaler initialization + + Initialize the scaler transformation with the data + Should always return self in subclasses""" + raise NotImplementedError("Scaler initialization has not been implemented yet") + + def load(self): + """# Scaler loading + + Load the data scaler model from a file + Should always return self in subclasses""" + raise NotImplementedError("Scaler loading has not been implemented yet") + + def save(self): + """# Scaler saving + + Save the data scaler model""" + raise NotImplementedError("Scaler saving has not been implemented yet") + + def transform(self, *args, **kwargs): + """# Scale the given data""" + return self.__call__(*args, **kwargs) + + def __call__(self, *args, **kwargs): + """# Scale the given data""" + raise NotImplementedError("Scaler has not been implemented yet") diff --git a/code/sunlab/common/scaler/max_abs_scaler.py b/code/sunlab/common/scaler/max_abs_scaler.py new file mode 100644 index 0000000..56ea589 --- /dev/null +++ b/code/sunlab/common/scaler/max_abs_scaler.py @@ -0,0 +1,48 @@ +from .adversarial_scaler import AdversarialScaler + + +class MaxAbsScaler(AdversarialScaler): + """# MaxAbsScaler + + Scale the data based on the maximum-absolute value in each column""" + + def __init__(self, base_directory): + """# MaxAbsScaler initialization + + - Initialize the base directory of the model where it will live + - Initialize the scaler model""" + super().__init__(base_directory) + from sklearn.preprocessing import MaxAbsScaler as MAS + + self.scaler_base = MAS() + self.scaler = None + + def init(self, data): + """# Scaler initialization + + Initialize the scaler transformation with the data""" + self.scaler = self.scaler_base.fit(data) + return self + + def load(self): + """# Scaler loading + + Load the data scaler model from a file""" + from pickle import load + + with open(f"{self.base_directory}/portable/maxabs_scaler.pkl", "rb") as fhandle: + self.scaler = load(fhandle) + return self + + def save(self): + """# Scaler saving + + Save the data scaler model""" + from pickle import dump + + with open(f"{self.base_directory}/portable/maxabs_scaler.pkl", "wb") as fhandle: + dump(self.scaler, fhandle) + + def __call__(self, *args, **kwargs): + """# Scale the given data""" + return self.scaler.transform(*args, **kwargs) diff --git a/code/sunlab/common/scaler/quantile_scaler.py b/code/sunlab/common/scaler/quantile_scaler.py new file mode 100644 index 0000000..a0f53fd --- /dev/null +++ b/code/sunlab/common/scaler/quantile_scaler.py @@ -0,0 +1,52 @@ +from .adversarial_scaler import AdversarialScaler + + +class QuantileScaler(AdversarialScaler): + """# QuantileScaler + + Scale the data based on the quantile distributions of each column""" + + def __init__(self, base_directory): + """# QuantileScaler initialization + + - Initialize the base directory of the model where it will live + - Initialize the scaler model""" + super().__init__(base_directory) + from sklearn.preprocessing import QuantileTransformer as QS + + self.scaler_base = QS() + self.scaler = None + + def init(self, data): + """# Scaler initialization + + Initialize the scaler transformation with the data""" + self.scaler = self.scaler_base.fit(data) + return self + + def load(self): + """# Scaler loading + + Load the data scaler model from a file""" + from pickle import load + + with open( + f"{self.base_directory}/portable/quantile_scaler.pkl", "rb" + ) as fhandle: + self.scaler = load(fhandle) + return self + + def save(self): + """# Scaler saving + + Save the data scaler model""" + from pickle import dump + + with open( + f"{self.base_directory}/portable/quantile_scaler.pkl", "wb" + ) as fhandle: + dump(self.scaler, fhandle) + + def __call__(self, *args, **kwargs): + """# Scale the given data""" + return self.scaler.transform(*args, **kwargs) |