aboutsummaryrefslogtreecommitdiff
path: root/code/sunlab/common/data/utilities.py
diff options
context:
space:
mode:
authorChristian C <cc@localhost>2024-11-11 12:29:32 -0800
committerChristian C <cc@localhost>2024-11-11 12:29:32 -0800
commitb85ee9d64a536937912544c7bbd5b98b635b7e8d (patch)
treecef7bc17d7b29f40fc6b1867d0ce0a742d5583d0 /code/sunlab/common/data/utilities.py
Initial commit
Diffstat (limited to 'code/sunlab/common/data/utilities.py')
-rw-r--r--code/sunlab/common/data/utilities.py119
1 files changed, 119 insertions, 0 deletions
diff --git a/code/sunlab/common/data/utilities.py b/code/sunlab/common/data/utilities.py
new file mode 100644
index 0000000..6b4e6f3
--- /dev/null
+++ b/code/sunlab/common/data/utilities.py
@@ -0,0 +1,119 @@
+from .shape_dataset import ShapeDataset
+from ..scaler.max_abs_scaler import MaxAbsScaler
+
+
+def import_10x(
+ filename,
+ magnification=10,
+ batch_size=None,
+ shuffle=False,
+ val_split=0.0,
+ scaler=None,
+ sort_columns=None,
+):
+ """# Import a 10x Image Dataset
+
+ Pixel-to-micron: ???"""
+ magnification = 10
+ dataset = ShapeDataset(
+ filename,
+ batch_size=batch_size,
+ shuffle=shuffle,
+ pre_scale=magnification,
+ val_split=val_split,
+ scaler=scaler,
+ sort_columns=sort_columns,
+ )
+ return dataset
+
+
+def import_20x(
+ filename,
+ magnification=10,
+ batch_size=None,
+ shuffle=False,
+ val_split=0.0,
+ scaler=None,
+ sort_columns=None,
+):
+ """# Import a 20x Image Dataset
+
+ Pixel-to-micron: ???"""
+ magnification = 20
+ dataset = ShapeDataset(
+ filename,
+ batch_size=batch_size,
+ shuffle=shuffle,
+ pre_scale=magnification,
+ val_split=val_split,
+ scaler=scaler,
+ sort_columns=sort_columns,
+ )
+ return dataset
+
+
+def import_dataset(
+ filename,
+ magnification,
+ batch_size=None,
+ shuffle=False,
+ val_split=0.0,
+ scaler=None,
+ sort_columns=None,
+):
+ """# Import a dataset
+
+ Requires a magnificaiton to be specified"""
+ dataset = ShapeDataset(
+ filename,
+ pre_scale=magnification,
+ batch_size=batch_size,
+ shuffle=shuffle,
+ val_split=val_split,
+ scaler=scaler,
+ sort_columns=sort_columns,
+ )
+ return dataset
+
+
+def import_full_dataset(fname, magnification=20, scaler=None):
+ """# Import a Full Dataset
+
+ If a classification file exists(.txt with a 'Class' header and 'frame','cellnumber' headers), also import it"""
+ from os.path import isfile
+ import pandas as pd
+ import numpy as np
+
+ cfname = fname
+ tfname = cfname[:-3] + "txt"
+ columns = [
+ "frame",
+ "cellnumber",
+ "x-cent",
+ "y-cent",
+ "actinedge",
+ "filopodia",
+ "bleb",
+ "lamellipodia",
+ ]
+ if isfile(tfname):
+ dataset = import_dataset(cfname, magnification=magnification, scaler=scaler)
+ class_df = np.loadtxt(tfname, skiprows=1)
+ class_df = pd.DataFrame(class_df, columns=columns)
+ full_df = pd.merge(
+ dataset.dataframe,
+ class_df,
+ left_on=["Frames", "CellNum"],
+ right_on=["frame", "cellnumber"],
+ )
+ full_df["Class"] = np.argmax(
+ class_df[["actinedge", "filopodia", "bleb", "lamellipodia"]].to_numpy(),
+ axis=-1,
+ )
+ dataset.labels = full_df["Class"].to_numpy()
+ else:
+ dataset = import_dataset(cfname, magnification=magnification, scaler=scaler)
+ full_df = dataset.dataframe
+ dataset.dataframe = full_df
+ dataset.filter_off()
+ return dataset