aboutsummaryrefslogtreecommitdiff
path: root/code/sunlab/common/data/image_dataset.py
diff options
context:
space:
mode:
authorChristian C <cc@localhost>2024-11-11 12:29:32 -0800
committerChristian C <cc@localhost>2024-11-11 12:29:32 -0800
commitb85ee9d64a536937912544c7bbd5b98b635b7e8d (patch)
treecef7bc17d7b29f40fc6b1867d0ce0a742d5583d0 /code/sunlab/common/data/image_dataset.py
Initial commit
Diffstat (limited to 'code/sunlab/common/data/image_dataset.py')
-rw-r--r--code/sunlab/common/data/image_dataset.py75
1 files changed, 75 insertions, 0 deletions
diff --git a/code/sunlab/common/data/image_dataset.py b/code/sunlab/common/data/image_dataset.py
new file mode 100644
index 0000000..46e77b6
--- /dev/null
+++ b/code/sunlab/common/data/image_dataset.py
@@ -0,0 +1,75 @@
+class ImageDataset:
+ def __init__(
+ self,
+ base_directory,
+ ext="png",
+ channels=[0],
+ batch_size=None,
+ shuffle=False,
+ rotate=False,
+ rotate_p=1.,
+ ):
+ """# Image Dataset
+
+ Load a directory of images"""
+ from glob import glob
+ from matplotlib.pyplot import imread
+ from numpy import newaxis, vstack
+ from numpy.random import permutation, rand
+
+ self.base_directory = base_directory
+ files = glob(self.base_directory + "*." + ext)
+ self.dataset = []
+ for file in files:
+ im = imread(file)[newaxis, :, :, channels].transpose(0, 3, 1, 2)
+ self.dataset.append(im)
+ # Also add rotations of the image to the dataset
+ if rotate:
+ if rand() < rotate_p:
+ self.dataset.append(im[:, :, ::-1, :])
+ if rand() < rotate_p:
+ self.dataset.append(im[:, :, :, ::-1])
+ if rand() < rotate_p:
+ self.dataset.append(im[:, :, ::-1, ::-1])
+ if rand() < rotate_p:
+ self.dataset.append(im.transpose(0, 1, 3, 2))
+ if rand() < rotate_p:
+ self.dataset.append(im.transpose(0, 1, 3, 2)[:, :, ::-1, :])
+ if rand() < rotate_p:
+ self.dataset.append(im.transpose(0, 1, 3, 2)[:, :, :, ::-1])
+ if rand() < rotate_p:
+ self.dataset.append(im.transpose(0, 1, 3, 2)[:, :, ::-1, ::-1])
+ self.dataset = vstack(self.dataset)
+ if shuffle:
+ self.dataset = self.dataset[permutation(self.dataset.shape[0]), ...]
+ self.batch_size = (
+ batch_size if batch_size is not None else self.dataset.shape[0]
+ )
+
+ def torch(self, device=None):
+ """# Cast to Torch Tensor"""
+ import torch
+
+ if device is None:
+ device = torch.device("cpu")
+ return torch.tensor(self.dataset).to(device)
+
+ def numpy(self):
+ """# Cast to Numpy Array"""
+ return self.dataset
+
+ def __len__(self):
+ """# Return Number of Cases
+
+ (or Number in each Batch)"""
+ return self.dataset.shape[0] // self.batch_size
+
+ def __getitem__(self, index):
+ """# Slice By Batch"""
+ if type(index) == tuple:
+ return self.dataset[index]
+ elif type(index) == int:
+ return self.dataset[
+ index * self.batch_size : (index + 1) * self.batch_size, ...
+ ]
+ return